skip to main content


Search for: All records

Creators/Authors contains: "Basu, Aritra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Comprehending the radio–infrared (IR) relations of the faint extragalactic radio sources is important for using radio emission as a tracer of star formation in high redshift (z) star-forming galaxies (SFGs). Using deep uGMRT observations of the ELAIS-N1 field in the 0.3–0.5 GHz range, we study the statistical properties of the radio–IR relations and the variation of the ‘q-parameter’ up to z = 2 after broadly classifying the faint sources as SFGs and AGN. We find the dust temperature (Tdust) to increase with z. This gives rise to $q_{\rm 24\,\mu m}$, measured at $24\, \mu$m, to increase with z as the peak of IR emission shifts towards shorter wavelengths, resulting in the largest scatter among different measures of q-parameters. $q_{\rm 70\,\mu m}$ measured at $70\, \mu$m, and qTIR using total-IR (TIR) emission are largely unaffected by Tdust. We observe strong, non-linear correlations between the radio luminosities at 0.4 and 1.4 GHz with $70\, \mu$m luminosity and TIR luminosity(LTIR). To assess the possible role of the radio-continuum spectrum in making the relations non-linear, for the first time we study them at high z using integrated radio luminosity (LRC) in the range 0.1–2 GHz. In SFGs, the LRC–LTIR relation remains non-linear with a slope of 1.07 ± 0.02, has a factor of 2 lower scatter compared to monochromatic radio luminosities, and $q^{\rm RC}_{\rm TIR}$ decreases with z as $q^{\rm RC}_{\rm TIR}= (2.27 \pm 0.03)\, (1+z)^{-0.12 \pm 0.03}$. A redshift variation of q is a natural consequence of non-linearity. We suggest that a redshift evolution of magnetic field strengths and/or cosmic ray acceleration efficiency in high-z SFGs could give rise to non-linear radio–IR relations.

     
    more » « less
  2. null (Ed.)
    The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and dark matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era. 
    more » « less